翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

negative conclusion from affirmative premises : ウィキペディア英語版
negative conclusion from affirmative premises
Negative conclusion from affirmative premises is a syllogistic fallacy committed when a categorical syllogism has a negative conclusion yet both premises are affirmative. The inability of affirmative premises to reach a negative conclusion is usually cited as one of the basic rules of constructing a valid categorical syllogism.
Statements in syllogisms can be identified as the following forms:
* a: All A is B. (affirmative)
* e: No A is B. (negative)
* i: Some A is B. (affirmative)
* o: Some A is not B. (negative)
The rule states that a syllogism in which both premises are of form ''a'' or ''i'' (affirmative) cannot reach a conclusion of form ''e'' or ''o'' (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.)
Example (invalid aae form):
:Premise: All colonels are officers.
:Premise: All officers are soldiers.
:Conclusion: Therefore, no colonels are soldiers.
The aao-4 form is perhaps more subtle as it follows many of the rules governing valid syllogisms, except it reaches a negative conclusion from affirmative premises.
Invalid aao-4 form:
:All A is B.
:All B is C.
:Therefore, some C is not A.
This is valid only if A is a proper subset of B and/or B is a proper subset of C. However, this argument reaches a faulty conclusion if A, B, and C are equivalent. In the case that A = B = C, the conclusion of the following simple aaa-1 syllogism would contradict the aao-4 argument above:
:All B is A.
:All C is B.
:Therefore, all C is A.
==See also==

* Affirmative conclusion from a negative premise, in which a syllogism is invalid because an affirmative conclusion is reached from a negative premise
* Fallacy of exclusive premises, in which a syllogism is invalid because both premises are negative

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「negative conclusion from affirmative premises」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.